A Nationwide Screen of Carbapenem-Resistant *Klebsiella pneumoniae* Reveals an Isolate with Enhanced Virulence and Clinically Undetected Colistin Heteroresistance

Jessie E. Wozniak,a,b,c,d Victor I. Band,a,b,c,d Andrew B. Conley,f Lavanya Rishishwar,f Eileen M. Burd,c,d Sarah W. Satola,c,d Dwight J. Hardy,h Rebecca Tsay,h Monica M. Farley,c,d,e Jesse T. Jacob,c,d,e Ghinwa Dumyati,h I. King Jordan,f,g David S. Weissb,c,d,e

aEmory University, Atlanta, Georgia, USA
bEmory Vaccine Center, Atlanta, Georgia, USA
cEmory University School of Medicine, Atlanta, Georgia, USA
dEmory Antibiotic Resistance Center, Atlanta, Georgia, USA
eAtlanta VA Medical Center, Decatur, Georgia, USA
fIHRC Applied Bioinformatics Laboratory, Georgia Institute of Technology, Atlanta, Georgia, USA
gSchool of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
hUniversity of Rochester Medical Center, Rochester, New York, USA

ABSTRACT The convergence of hypervirulence and multidrug resistance in *Klebsiella pneumoniae* is a significant concern. Here, we report the first screen for hypermucoviscosity, a trait associated with increased virulence, using a U.S. surveillance collection of carbapenem-resistant (CR) *K. pneumoniae* isolates. We identified one hypermucoviscous isolate, which carried a gene encoding the KPC-3 carbapenemase, among numerous resistance genes. The strain further exhibited colistin heteroresistance undetected by diagnostics. This convergence of diverse resistance mechanisms and increased virulence underscores the need for enhanced *K. pneumoniae* surveillance.

KEYWORDS KPC, *Klebsiella*, colistin, heteroresistance, hypermucoviscous

Several recent reports have described carbapenem-resistant (CR), hypervirulent *Klebsiella pneumoniae* strains in China (1–4). Alarming, strains described by Gu et al. harbored plasmids containing virulence genes, including those controlling capsule-mediated hypermucoviscosity, and antibiotic resistance genes, including that encoding the KPC-2 carbapenemase (1). Previously, hypervirulent/hypermucoviscous *Klebsiella pneumoniae* (hvKP) strains were largely antibiotic susceptible. While the majority of infections with hvKP occur in Asia, we were interested in systematically assessing the prevalence of carbapenem-resistant hvKP (CR-hvKP) strains in the United States.

We tested 265 carbapenem-resistant *K. pneumoniae* clinical isolates collected between 2012 and 2015 from the Emerging Infections Program (EIP) Multi-site Gram-negative Surveillance Initiative (MuGSI) which has a surveillance population of >15 million people in 8 states across the United States. We phenotypically screened isolates using the string test to detect hypermucoviscosity, which has been strongly correlated with hypervirulence. *K. pneumoniae* isolates collected through MuGSI between 2012 and 2015 were streaked out on blood agar plates (tryptic soy agar [TSA] with 5% sheep blood; Remel, Thermo Fisher Scientific). The string test was performed to detect hypermucoviscosity, using a 1-μl inoculation loop on a single colony. A positive string test is >5 mm in length. One isolate collected in 2014 from New York, termed CDC98, was positive by the string test (Fig. S1 and Movie S1). Subsequent testing by six independent scientists who were blind to the strains being tested confirmed CDC98 as being string test positive compared to three nonhypermucoviscous negative-control strains (Fig. S2).
Whole-genome Illumina sequencing revealed that CDC98 is sequence type 258 (ST258), capsule type KL107, and contains numerous resistance genes, including kpc3. ST258 is the current global pandemic strain of *K. pneumoniae*, and although the reasons for its success as a global pathogenic strain are uncertain, it is likely to have a fitness and selective advantage, as well as success, due to its antibiotic-resistance elements (5, 6). Additionally, we discovered by sequencing that the isolate harbors a previously unreported hybrid of plasmids pKPN-498 and pUHKPC45-117, encoding antibiotic resistance [SHV-12, sulI, catA1, mph(A), LEN-4, dfrA12, and aadA2] and virulence (sil and pco) genes. Interestingly, the isolate does not harbor the virulence plasmid pLVPK (or its close derivatives, collectively referred to here as pLVPKs) found in most Asian hvKP strains or the previously identified regulators of hypermucoviscosity and hypervirulence, *rmpA* and *rmpA2* (7). The genes *rmpA* and *rmpA2* have been thought to be responsible for the hypermucoviscous phenotype by direct regulation of the *cps* locus, although examples have been published where hypermucoviscosity was observed in the absence of these genes (8–13). In addition to the putative virulence genes encoded on the hybrid plasmid, CDC98 possesses chromosomal copies of the siderophore receptor genes *iutA* and *iroN*, which are found on pLVPKs in many Asian hvKP isolates.

The level of virulence of CDC98 was difficult to predict, since it is hypermucoviscous yet lacks pLVPK. We directly assessed this using a murine *in vivo* infection model; C57BL/6 mice were infected intraperitoneally with 10^6 CFU of the indicated *K. pneumoniae* strains. Mice were provided with food and water *ad libitum* and monitored for signs of illness or weight loss. Mice exhibiting weight loss below 80% of starting weight were euthanized. CDC98 was indeed more virulent than three nonhypermucoviscous ST258 *K. pneumoniae* isolates from the same study site (New York; Fig. 1). However, while CDC98 displays significantly increased virulence compared to the other *K. pneumoniae* isolates tested, this level of virulence is far lower than that observed in canonical hypervirulent *K. pneumoniae* strains (14).

As the sequencing of CDC98 indicated the presence of multiple antibiotic-resistance genes, antibiotic susceptibility testing was performed using the MicroScan WalkAway 96 plus instrument (Beckman Coulter, Inc., Brea, CA) and Neg Breakpoint Combo 44 panel, and the resultant antibiogram of this strain revealed extensive drug resistance to multiple classes of antibiotics, including carbapenems (Table S1). In the case of multidrug-resistant strains, such as CDC98, last-line antibiotics are often required for treatment. One such drug is the cationic polymyxin antibiotic colistin, which disrupts the membranes of Gram-negative bacteria.

Additional susceptibility testing by population analysis profile (PAP), whereby serial dilutions of an overnight bacterial culture are plated on increasing concentrations of an antibiotic on agar plates, revealed CDC98 to be heteroresistant to colistin (Fig. 2A). Heteroresistance describes a phenomenon wherein a subpopulation of bacteria in an...
otherwise homogenous population displays antibiotic resistance. Importantly, previous work has shown that colistin heteroresistance mediates antibiotic treatment failure in mice, and it has been postulated that this may in part contribute to unexplained antibiotic treatment failure in the clinic (15). Diagnostic testing for colistin susceptibility by Etest (Fig. 2B) or broth microdilution (BMD; MIC < 0.5 μg/ml) classified CDC98 as susceptible, indicating that the heteroresistance was not detected.

This is the first report of a systematic survey of carbapenem-resistant Klebsiella pneumoniae isolates for hypermucoviscosity in the United States. Discrepancies between Asian CR-hvKP strains (such as strain K1; [1]) and CDC98 suggest that a distinct lineage of carbapenem-resistant K. pneumoniae may be emerging in the United States, as CDC98 exhibits phenotypic similarities to contemporary hypervirulent K. pneumoniae strains while containing significant genetic differences (Table S2). These findings are further supported by a recent U.S. isolate exhibiting rmpA and/or rmpA2-independent increased capsular polysaccharide production and enhanced virulence, which was not as virulent as classical hvKP strains (8). Together, these results are indicative of the convergent evolution of distinct lineages of K. pneumoniae in Asia and the United States, leading to acquisition of enhanced virulence and antibiotic resistance. This convergence, taken together with emerging antibiotic resistance mechanisms, like heteroresistance, that can often go undetected by current diagnostics, pose a new and worrisome threat to public health.

Recent discussion in the field has suggested that using hypermucoviscosity as the singular criterion for identifying hypervirulence is insufficient. Hypermucoviscous isolates with enhanced virulence, such as CDC98, can lack the common genomic biomarkers for hypervirulence (rmpA, rmpA2, K1 capsular serotype, etc.). Therefore, while our findings reveal that CR-hvKP isolates have been relatively rare, both phenotypic and genotypic screening will be critical to gain a comprehensive understanding of CR-hvKP in the United States.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC.00107-19.

SUPPLEMENTAL FILE 1, PDF file, 1.9 MB.
SUPPLEMENTAL FILE 2, MOV file, 10.8 MB.
ACKNOWLEDGMENTS

We thank Chui-Yoke Chin, Emily Crispell, David Hufnagel, Sree Sai Jaggavarapu, and Hannah Ratner for critical reading of the manuscript. We also thank the Emerging Infections Program and Centers for Disease Control and Prevention staff involved in the Multi-site Gram-negative Surveillance Initiative for the collection, cataloging, and characterization of relevant clinical isolates, including Sandra Bulens and Maria Karlsson. We thank the Genomics Resource Center at the University of Maryland School of Medicine for Illumina sequencing.

D.S.W. is supported by a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease award, VA Merit Award 101 BX002788, and NIH grant AI141883. This work was supported in part by the Emerging Infections Program and the National Center for Emerging and Zoonotic Infectious Diseases at the U.S. Centers for Disease Control and Prevention.

The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

We declare no competing financial interests. Experiments, data collection, and analysis were performed by J.W., V.I.B., A.B.C., L.R., E.M.B., and S.W.S. Data interpretation was conducted by J.W., V.I.B., A.C., I.K.J., L.R., E.M.B., S.W.S., and D.S.W. The manuscript was prepared by J.W. and D.S.W. The study was planned and directed by D.S.W., who had full access to all data presented in the study and final responsibility to submit for publication.

REFERENCES