Methods paper

Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain

Aswathy Sebastian a, Lavanya Rishishwar a, Jianrong Wang a, Karen F. Bernard b, Andrew B. Conley a, Nael A. McCarty b, I. King Jordan a,c,⁎

a School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
b Department of Pediatrics and Center for Cystic Fibrosis Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
c PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia

Abbreviations: ABC transporters, ATP-binding cassette transporters; ABCC, ATP-binding cassette; sub-family C; ABCC4, ATP-binding cassette, sub-family C, member 4; ABCC7, ATP-binding cassette, sub-family C, member 7; CFTR, Cystic Fibrosis Transmembrane Conductance Regulator protein; NBD, Nucleotide binding domain; R domain, Regulatory domain; TMD, Transmembrane Domain.

1. Introduction

The human Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a transmembrane protein that forms a channel for the transport of chloride ions in epithelial cells (Gadsby et al., 2006). Mutations to the CFTR encoding gene disable this ion channel function and lead to Cystic Fibrosis, which is among the most common lethal genetic diseases affecting Caucasians in the United States and Europe (Rommens et al., 1989). The CFTR transmembrane ion channel pore is made up of two separate domains (TMD1 & TMD2), each of which contains six membrane spanning helices (Supplementary Fig. 1). On the cytoplasmic side of the plasma membrane, the CFTR structure is characterized by two globular nucleotide binding domains (NBD1 & NBD2), which interact with each other and with an unstructured regulatory region known as the R domain.

Despite the fact that it functions as an ion channel, CFTR is a member of the ABC superfamily of membrane transporters (Dassa and Bouige, 2001; Dean and Annilo, 2005). The human genome encodes seven distinct families of ABC transporters (ABCA–ABCG), and CFTR is most closely related with the ABCC family (Supplementary Fig. 2A) (Jordan et al., 2008). This similarity can be seen both at the level of sequence identity and domain architecture (Supplementary Fig. 2B). In fact, CFTR is also referred to by the alternate gene symbol ABCC7 (http://www.ncbi.nlm.nih.gov/gene/1080), consistent with its identity as a
modified ABC transporter and a member of the ABCC family. Nevertheless, CFTR is distinguished from all other members of the ABCC family, and all other ABC transporters for that matter, by the presence of the R domain (Supplementary Fig. 2B).

Given that the R domain is a defining characteristic of CFTR, one which distinguishes it from all related ABC transporters, it has been the target of a number of functional studies aimed at understanding its contribution to the CFTR-specific ion channel function. CFTR is an ATP-dependent chloride channel with activity that is jointly regulated by the R domain and the NBDs (Gadsby and Nairn, 1994). Full channel activity requires protein kinase A-dependent phosphorylation at multiple sites in the R domain (Chang et al., 1993; Cheng et al., 1991; Rich et al., 1993) along with the binding and hydrolysis of ATPs by the NBDs (Gadsby and Nairn, 1999). This combinational activation of the channel is achieved via highly dynamic physical interactions within and between the R domain and the NBDs. In particular, the R domain is thought to stimulate channel opening via direct phosphorylation-dependent dissociation from the NBDs, which in turn facilitates NBD dimerization and subsequent ATP binding and hydrolysis at the dimer interface (Baker et al., 2007). Interestingly, the R domain may also play an inhibitory role in CFTR channel activity, both in the unphosphorylated state, and also when specific serine residues are phosphorylated (Baldursson et al., 2001; Vais et al., 2004; Wilkinson et al., 1997; Xie et al., 2002).

The CFTR-specific R domain is further distinguished from the TMDs and NBDs shared with ABC transporters in that it does not appear to adopt any stable structural conformation (Dulhanty and Riordan, 1994; Ostedgaard et al., 2000). The intrinsically disordered state of the R domain may facilitate its dynamic physical association with the NBDs by allowing for multiple binding events, depending on which residues are phosphorylated, and by facilitating the reversibility needed for such serially inducible binding events (Baker et al., 2007; Wright and Dyson, 1999).

Despite the functional knowledge that has been accumulated for the CFTR R domain, very little is known about its origin and subsequent evolution. There is little or no demonstrable sequence homology between the R domain and any other known domains, which makes it difficult to determine how and from where the domain may have been acquired by CFTR. Furthermore, the kinds of selective forces that have shaped the R domain evolution since its acquisition by CFTR remain largely unexplored. In this study, we sought to explore where the R domain came from and how it has evolved since that time. Specifically, we sought to understand: 1) the timing of and molecular mechanisms that underlie the acquisition of the R domain along the CFTR lineage, and 2) the role of natural selection in the subsequent evolution of the R domain as it relates to the known function of the domain.

2. Results and discussion

2.1. Part I: origin of the R domain

We first attempted to evaluate the origin of the CFTR R domain via a series of comparative sequence analyses with closely related ABC transporter sequences.

2.2. Comparative analysis of CFTR gene sequence and structure

Sequence similarity comparison and phylogenetic analysis show that CFTR is most closely related to the ABC4 member of the ABC family (Figs. 1A & B). CFTR and ABC4 share a common ancestor that is distinct from the remaining family members and their close similarity can also be seen at the level of domain architecture (Fig. 1C, Supplementary Fig. 2).

The protein sequence and structural similarity between CFTR and ABC4 also extends to the level of gene sequence architecture in terms of the exon–intron structures of their genes (Supplementary Fig. 3). In order to evaluate the similarities of gene exon–intron structures between the genes that encode CFTR and the other ABC family members, we devised a simple quantitative metric that accounts for the percentage of exons that show complete overlap between gene pairs. For example, 22 of the 27 CFTR exons (81%) show complete overlap with the corresponding (orthologous) exons of ABC4, and conversely 27 of the 31 ABC4 exons (87%) show complete overlap with their CFTR counterparts (Supplementary Fig. 4A). The average exon conservation between CFTR and ABC4 (84%) is substantially higher than seen for the gene that encodes the next closest protein sequence in the family ABC5 (23%; Supplementary Fig. 4B). Furthermore, the average exon conservation between CFTR and ABC4 (84%) is far higher than seen between CFTR and all other members of the ABC family (13–27%; Supplementary Fig. 4C).

The high similarity seen for the CFTR and ABC4 gene exon–intron structures, along with the marked differences between the gene structures of CFTR and the other ABC family members, is consistent with the observation that CFTR and ABC4 share a recent common ancestor to the exclusion of all other family members (Fig. 1B). When considered together with their respective domain architectures (Fig. 1C), these results indicate that the R domain emerged late in the evolution of the ABC family, after the divergence of the CFTR and ABC4 lineages, via a change in the exon–intron structure of the CFTR gene. These results also suggest that careful comparison of the CFTR and ABC4 gene sequences, contrasted against the background of the other ABC family member gene sequences, could provide valuable clues as to how and when the R domain emerged.

2.3. A lineage-specific extension of exon 14 gave rise to the R domain

The CFTR and ABC4 exon–intron structures are highly conserved through the first part of the protein coding sequences for the TMD1 and NBD1 domains; exons 1–13 are completely correspondent between the two genes in this region (Fig. 2A). At this point in the CFTR–ABC4 alignment, the exon–intron correspondence drops off precipitously (Fig. 2B). The 5′ region of exon 14 that encodes part of the NBD1 domain is conserved among both genes, but the R domain encoding portions of exon 14 and the entire exon 15 are unique to CFTR. When all other human members of the ABC family are compared in a similar way, the extension of CFTR exon 14 leading to the addition of the R domain is even more apparent (Fig. 2B), and in fact this extension occurred in a highly conserved region of these genes/proteins (Fig. 2C).

Taken together, these results suggest that a single mutational event may have been responsible for the emergence of the R domain along the CFTR lineage. To better understand how the R domain may have emerged along the CFTR lineage after its divergence from the common ancestor with ABC4, we evaluated gene sequence alignment of the exon 14 extension region among orthologous CFTR sequences and orthologous ABC4 sequences from a diverse set of vertebrates. The specific region analyzed consisted of 60 bp upstream and 60 bp downstream of the position that marks the end of exon 14 in ABC4 and the beginning of the R domain extension in CFTR exon 14 (Fig. 3A). The level of sequence conservation among ABC4 orthologs drops off precipitously at this point and in to the intron, whereas the corresponding sequence is conserved among CFTR orthologs at this point (Figs. 3B and C). This indicates that formerly intronic sequence in CFTR has been conserved by virtue of functional constraint, consistent with its status as newly acquired protein coding sequence exon, whereas the corresponding intronic region in ABC4 remained free from constraint.

Position-specific sequence conservation at the ABC4 exon 14 3′ exon–intron junction site reveals that ABC4 vertebrate sequences encode a fairly canonical splice donor site AG/GTAA (Fig. 3D). However, at the same point on the CFTR alignment the sequences have been shifted one position downstream AA/GGTA. This change appears to have been based on a pair of insertion/deletion events in the sequence just adjacent to the splice donor site, which resulted in a loss of the
site and subsequent read-through and capture of formerly intronic sequence as additional exon 14 sequence in the CFTR lineage (Fig. 3E). It is not possible to determine which of these events occurred first, or if they occurred in very close proximity in time, but this slight and discrete pair of changes had profound consequences with respect to the functional distinction of the CFTR ion channel from its close ABC transporter relatives.

In order to determine approximately when the R domain emerged along the CFTR lineage, we evaluated the phyletic distribution of R domain homologous sequences among chordates. Mammals, reptiles, amphibians and fish can all be seen to possess R domain sequences, whereas basal vertebrates and chordates do not encode sequences with homology to the R domain (Fig. 4). Thus, the CFTR R domain appears to have emerged just prior to the diversification of the vertebrate superclass Gnathostomata, which comprises all jawed vertebrates including fish, between ~650 and 550 mya.

While the majority of the R domain is encoded by the extended exon 14, the carboxy terminus of the domain is encoded by CFTR exon 15. This exonic region is also found exclusively in CFTR and missing from related ABC genes (Supplementary Figs. 4 & 5). There are also no homologous regions for exon 15 or its encoded amino acid sequence outside of its CFTR orthologs, further consistent with its evolutionary novelty. Exon 15 also shows no evidence of having originated from a mobile genetic element or repetitive sequence of any kind. Still, the incorporation of the novel CFTR exon 15 into the full-length CFTR transcript is supported by the presence of a canonical splice donor site at the 3′ end of exon 14 along with paired splice acceptor and splice donor sites at the 5′ and 3′ ends of exon 15 (Supplementary Fig. 6). And despite the fact that exon 15 is evolutionarily younger than the remaining CFTR exons, its splice sites show similar levels of conservation to those from the rest of the gene, indicating equally strong selective constraint for the incorporation of this lineage-specific exon into the CFTR transcript (Supplementary Fig. 6).

Although CFTR exon 15 is lineage-specific, it is found in a genomic region that is smaller than the corresponding regions in related ABC genes. In fact, ABC genes encode additional exons 15 & 16 in this region that are missing from CFTR. These data point to a lineage-specific loss of protein coding genomic sequence in the CFTR gene. In other words, CFTR added an additional protein-coding domain despite an overall loss of genomic sequence in the region, i.e. the origin of the R domain cannot be attributed to a CFTR lineage-specific genome sequence insertion as may have been expected a priori.

2.4. Part II: evolution of the R domain

Having explored the timing and the mutational events that led to the origin of the CFTR R domain, we next attempted to understand the nature of the evolutionary forces that have acted on the domain since its emergence.

2.5. Selective constraint on the R domain

Multiple sequence alignments of both CFTR amino acid sequences and protein coding nucleotide sequences were evaluated in order to assess the levels of selective constraint on the R domain compared to the other CFTR domains. The R domain can be seen to show the highest levels of amino acid and nucleotide sequence diversities along with the highest ratio of non-synonymous-to-synonymous substitution rates (dN/dS) indicative of relatively low levels of selective constraint for this domain relative to all other CFTR domains (Figs. 5A, B). This observation, along with the fact that the R domain evolved from non-coding intronic sequence into exonic protein coding sequence, raises the possibility that the domain has experienced positive selection to accommodate its novel function. Nevertheless, several lines of evidence seem to argue against a role for positive selection in the evolution of the R domain. First, when averaged across the entire R domain and for
all lineages considered, pairwise levels of dN are significantly lower than levels of dS, consistent with purifying selection (Fig. 5C). Second, when R domain dN versus dS levels are considered for individual branches on the CFTR phylogeny, all branches show dN ≪ dS (Fig. 5D). Third, when dN versus dS levels are considered for individual codons within the R domain, all codons show dN ≪ dS (Fig. 5E). In other words, despite the relatively low levels of selective constraint across the R domain, we were unable to find any statistically significant evidence for positive selection based on branch-specific or site-specific analyses of dN and dS.

It is worth noting that absence of evidence for positive selection on the R domain can not necessarily be taken as evidence of absence of such selection at some point in the history of the domain. Indeed, it is difficult to imagine that intronic sequence could be acquired and assimilated as functionally constrained protein coding exonic sequence as happened in the case of the R domain without at least some non-synonymous mutations being swept to fixation by positive selection. However, it may simply be the case that these particular changes happened too early, or too periodically, in the evolution of the domain to be detected by the extant sequences available for analysis. In addition, if only a few positions of the domain are critical for its functional utility, then these sites may have pre-existing in the sequences of the founder population, and as a consequence they would simply show evidence of strong selective constraint subsequent to the emergence of the domain on the CFTR lineage. Finally, these two scenarios are not mutually exclusive and some aspect of both may have been at play in the evolution of the domain.

Previously, it has been shown that genes that are expressed in a more tissue-specific manner, as well as exons that are alternatively expressed (Chen et al., 2006; Ramensky et al., 2008), show lower levels of selective constraint (i.e. higher dN/dS) than more constitutively expressed genes/exons. While there is no evidence of alternative splicing for the R domain, it may be the case that R domain exons are expressed in a more tissue-specific manner than the remaining CFTR domains. This could also explain their relatively low levels of selective constraint. We evaluated this possibility by comparing the levels of tissue/cell type-specificity for the CFTR R domain encoding exons compared to the remaining exons. R domain encoding exons do not show different levels of cell type-specificity than the remaining exons indicating that differences in
Fig. 3. Loss of a splice donor site in CFTR exon 14 led to the capture of formerly intronic sequence as R domain coding sequence. (A) Amino acid sequence alignment for the region centered on the ancestral ABCC4 splice donor site and the corresponding exon 14 extension in CFTR. (B & C) ABCC4 (red) and CFTR (blue) nucleotide sequence conservation levels for the same region. (D) Sequence motifs representing the site-specific sequence variation for canonical human splice site donor sequences, the ABCC4 exon 14 splice site donor sequence, and the corresponding region in CFTR. (E) Nucleotide sequence alignment for the region corresponding to the ABCC4 ancestral splice donor site and the CFTR exon 14 extension.
2.6. Anomalous evolutionary patterns of the R domain

Despite the lack of evidence for the action of positive selection on the CFTR R domain, sequences for this domain show distinctly anomalous patterns of evolution compared to other CFTR domains. First of all, the relative rates of site-specific sequence conservation across the R domain differ markedly from the other four domains. Conservation levels are fairly evenly distributed across R domain sites as can be seen from the relatively flat density distribution of conservation scores in Fig. 6A. In contrast, the other domains show a peak corresponding to highly conserved sites (low scores) and the distributions then fall off steeply to less conserved sites. These differences indicate that the R domain experiences a very different mode of selective constraint compared to the other domains.

Independent phylogenetic analyses of the five CFTR domains also show that the R domain has very distinct patterns of evolution with respect to branch-specific rates of change. The phylogeny of the CFTR sequences analyzed here shows two distinct groups of sequences, with fish on one side and terrestrial vertebrates on the other, separated by a long internal branch (Supplementary Fig. 8). Branches leading to sequences within the groups are relatively short especially for the mammalian CFTR sequences. This same pattern can be seen for the TMD and NBD domains, whereas the R domain phylogeny is far more star-like without a long internal branch and with relatively long external branches distributed throughout the tree (Supplementary Fig. 8). When this pattern for the domain specific phylogenies is quantified by taking the ratio of the length of this internal branch (B1) over the average length of all other branches (C), the anomalous pattern of R domain evolution becomes even more apparent (Fig. 6B). This unique pattern for R domain evolution further underscores the possibility that a distinct set of functional constraints and selective forces have been at play in its evolution.

The R domain is known to be unstructured (Dulhanty and Riordan, 1994; Ostedgaard et al., 2000), which is consistent with its emergence from formerly non-coding intronic sequence and its anomalous patterns of evolution compared to the other structured domains. Nevertheless, its overall levels of sequence divergence clearly indicate that the R domain is subject to selective constraint based on some functional utility. R domain regulatory function is predicated upon the phosphorylation of specific serine residues, which facilitates dissociation with NBD domains and their subsequent dimerization and activation of the channel (Baker et al., 2007). Given the demonstrated functional importance of such sites, we expected them to be highly conserved compared to other sites in the domain. Indeed, R domain-based sites that have been experimentally demonstrated to be phosphorylated are highly conserved, and in fact all but one are totally invariant (Fig. 6C). The high levels of conservation for these sites stand in stark contrast to the overall levels of evolution for the domain.

2.7. Model for the evolution of the R domain

Considered together, the anomalous patterns of R domain evolution and its relative levels of selective constraint allow us to pose a model for its initial emergence, its acquisition of functional utility and its subsequent evolution. First, the R domain can be seen to have emerged from previously non-coding intronic sequence. It has long been held that it is extremely rare to evolve protein coding sequences from non-coding sequences de novo in this way, and that it is far more common that new protein sequences evolve from duplication of existing protein coding sequences and/or from recombination of existing protein coding domains (Jacob, 1977; Ohno, 1970). However, recent studies suggest that de novo evolution of protein coding sequences may be more prevalent and important than previously imagined (Carvunis et al., 2012; Tautz and Domazet-Loso, 2011), and this may be particularly true for the human evolutionary lineage (Wu et al., 2011). In any case, this particular aspect of the R domain origin had important implications for its function and evolution. The fact that the R domain originated from intronic sequence made it extremely unlikely that it would be able to adopt a highly ordered structural confirmation, and indeed the domain is known to comprise a largely unstructured random coil (Dulhanty and Riordan, 1994; Ostedgaard et al., 2000). Thus, the function of the R domain is
Fig. 5. The R domain sequence is more variable than other CFTR domains but does not show evidence of positive selection. Average (± standard error) amino acid (A) and nucleotide (B) diversity levels for CFTR domains. (C) Average (± standard error) dN/dS ratios for CFTR domains. (D) CFTR vertebrate phylogeny showing branch specific values of dN/dS for the R domain sequences. Branch-specific dN/dS values are color coded according to the legend shown. (E) dN/dS ratios for all codons in the R domain, from CFTR residue 654 to 858, are shown (blue line) in comparison to the neutral expectation dN/dS = 1 (red dashed line).
not dependent on its structure per se, as with the other domains in CFTR, but rather on the regulatory potential encoded by a handful of key residues, i.e. those serines that are phosphorylated and enable R domain interaction with the NBDs to activate the channel (Gadsby and Nairn, 1999). Indeed, these particular sites are largely invariant among CFTR sequences, suggesting that they either existed at the time of the emergence of the domain or were swept to fixation shortly thereafter. Since that time the phosphorylated residues have been highly conserved across CFTR evolution. In this way, the evolution of the R domain was likely to consist of a short period of intense and profound change, leading to its phosphorylation-based regulatory capacity, followed by high conservation of the handful of phosphorylated residues and a simultaneous slow and steady drift for the rest of its sequence. This model is consistent with the more star-like phylogeny seen for the R domain compared to the other CFTR domains as well as its relatively flat distribution of site-specific conservation levels.

The rapid and profound evolutionary change represented by the acquisition of the R domain allowed CFTR, formerly an alternating-access transporter, to become locked into a given conformational state for longer periods of time thus fundamentally altering its activity and allowing it to explore novel functional space while the ancestral function was maintained by the existing repertoire of ABC transporters. Thus, CFTR may be considered to represent a case of neo-functionalization whereby gene duplication allows for a new paralog to take on a completely different function (Force et al., 1999). The combination of its emergence from non-coding sequence and its neo-functionalization make the CFTR R domain a particularly fascinating case of molecular evolution.

3. Materials and methods

3.1. Sequence and structure comparison within and between CFTR and other ABC transporter family members

The CFTR protein structure was obtained from the published CFTR homology model (Serohijos et al., 2008). Protein sequence similarity comparisons between CFTR and related ABC transporters were done using the BLASTP program (Altschul et al., 1997). Human protein sequences of CFTR and members of the ABCC transporter subfamily were obtained from the NCBI RefSeq database (Pruitt et al., 2009) (Supplementary Table 1). Protein sequences were aligned using ClustalW (Thompson et al., 1994), and Neighbor-Joining trees (Saitou and Nei, 1987) were constructed using the program MEGA (Tamura et al., 2011). Protein domain architectures for the sequences were characterized with the SMART (Schultz et al., 1998) tool.

CFTR and ABCC gene models (i.e. exon–intron structures) were taken from the NCBI Gene database (Maglott et al., 2011) (Supplementary Table 1). Each of the CFTR exons were compared to that of the representative member of the ABCC family using local pair wise alignment with Blast2Seq (Altschul et al., 1990) and EMBOSS Needle optimal global Alignment (Rice et al., 2000), and the set of individual exon alignments were considered together to characterize pairwise similarities in exon–intron structures. For each member in an alignment pair the number of exons that show complete overlap with the corresponding (i.e. orthologous) exons of the other member is normalized by its total number of exons to compute a percent exon conservation score. The average exon conservation score is taken as the average of these two scores.

Fig. 6. The R domain shows anomalous evolutionary patterns of sequence evolution. (A) Density distribution of site-specific conservation scores for CFTR domains (color coded as shown in the legend). (B) Ratios of the between group branch length divided by the average within group branch length (B1/C) for CFTR domain-specific phylogenies (see Supplementary Fig. 8). (C) Site-specific amino acid diversity along the length of the CFTR protein. The conservation levels of each individual amino acid position are shown (circles below), along with a sliding window of amino acid diversity (line above); in comparison to the CFTR domain architecture. CFTR residues that are subject to phosphorylation are shown in blue.
percentages for both members in the pair. For the purposes of analyzing both CFTR and ABC4 orthologous sequences from exons 13 to 15, i.e. at the point of the R domain extension in CFTR, separate CFTR and ABC4 alignments of orthologous vertebrate nucleotide sequences were taken from the ‘17-Way Cons’ track of the Mar. 2006 (NCBI36/hg18) human genome reference sequence at the UCSC genome browser (Fujita et al., 2011). Nucleotide sequence identity for these regions in the CFTR and ABC4 alignments was also computed based on the Kimura 2-parameter model implemented in MEGA. Sequence motif analysis of the alignments for this region spanning the R domain extension, or the ABC4 exon–intron junction, were performed using the Weblogo tool (Crooks et al., 2004).

For the purposes of identifying the timing of the origin of the CFTR R domain, PSI-BLAST was used to search all chordate sequences in the Genbank non-redundant database (Sayers et al., 2012). The specific time estimate reported is based on the deuterostome divergence time estimates reported in (Blair and Hedges, 2005).

3.2. Evolutionary forces on CFTR domains

All available vertebrate CFTR NCBI ReSeq mRNAs, both protein coding nucleotide sequences and their corresponding amino acid (protein) sequences, were analyzed in order to characterize the relative selective forces acting on the five CFTR domains (Supplementary Table 1). The ClustalW algorithm implemented in the program MEGA was used to align CFTR protein sequences and the corresponding protein coding nucleotide sequences were then aligned in-frame based on the protein sequence alignment. Human CFTR domain boundaries were determined using the SMART program and Neighbor-Joining phylogenies for each of the five domains were computed with the program MEGA. A Neighbor-Joining phylogeny based on the CFTR protein coding nucleotide sequence alignment was also computed using the program MEGA.

CFTR amino acid conservation levels were characterized using the Consurf webserver (Ashkenazy et al., 2010; Berezin et al., 2004), and Consurf scores were normalized to the interval [0, 1] with 0 being the most conserved and 1 being the least conserved. The locations and identities of experimentally characterized CFTR phosphorylation sites in the R domain were taken from (Baker et al., 2007). Overall CFTR nucleotide diversity levels along with dN and dS values were computed using MEGA. Codon-specific dN/dS values and branch-specific dN/dS values were computed using the GABranch analysis tool implemented on the Data Monkey web server (Delport et al., 2010; Pond and Frost, 2005a, 2005b; Pond et al., 2005).

The relationship between CFTR exon-specific expression levels and dN/dS was evaluated using expression data taken from exon tiling arrays. Expression levels for CFTR exons across 67 tissues/cell-types, generated by the University of Washington ENCODE group using the Affymetrix Human Exon 1.0 GeneChip, were taken from the UCSC Genome Browser ENCODE U1 Affy All-Exon Arrays track. For each CFTR exon, tissue/cell-type-specific expression levels were computed as:

\[TSE = \frac{\sum_{i}^{n} (1-X_{i})}{N} \]

where \(N \) is the number of tissues/cell-types and \(X_{i} \) is expression level in tissue \(i \) (Yanai et al., 2005).

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.gene.2013.02.050.

